


UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN
BOOKSTACKS



CENTRAL CIRCULATION BOOKSTACKS
The person charging this material is re-

sponsible for its renewal or its return to

the library from which it was borrowed
on or before the Latest Date stamped
below. You may be charged a minimum
fee of $75.00 for each lost book.
Theft/ mutilation, and underlining of books are reasons

for disciplinary action and may result In dismissal from
the University.

TO RENEW CALL TELEPHONE CENTER, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

BUILDING USE

NOV 2 J.996

NOV 2 199(6

LY

When renewing by phone, write new due date below

previous due date. L162

324 £ 2-3



Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/restricteddomain741ritz



EBR
FACULTY WORKING
PAPER NO. 741

Restricted Domains, Arrow Social Welfare Functions and
Noncorruptible and Nonmanipulable Social Choice
Correspondences: The Case of Private and
Public Alternatives

Zvi Ritz

College of Commerce and Business Administra
Bureau of Economic and Business Research
University of Illinois, Urbana-Champaign





3o^

BEiBM
dy

FACULTY WORKING PAPER NO. 741

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

February 1981

Restricted Domains, Arrow Social Welfare Functions
and Noncorruptible and Nonmanipulable Social Choice

Correspondences: The Case of Private and Public Alternatives

Zvi Ritz, Assistant Professor
Department of Business Administration

Acknowledgment : I wish to express my deep appreciation to

Ehud Kalai who introduced me to the field of social choice
and whose advice and support enabled me to complete this
paper. Thanks are also due to Alvin Roth for lengthy discus-
sions and valuable suggestions. This research was supported
in part by NSF grants SOC 7620953 and SOC 7907542.

w ». of I. gnu.





Abstract

An n-person social choice problem is considered in which the alterna-

tives are (n+1) dimensional vectors, with the first component of such a

vector being that part of the alternative affecting all the individuals

together, while the (i+1) component is the part of the alternative

affecting individual i alone. Assuming that individuals are selfish

(individual i must be indifferent between any two alternatives with the

same first and (i+1) components) , that they may be indifferent among

alternatives, and that each individual may choose his preferences out of

a different set of permissible preferences, we prove that any set of

restricted domains of preferences admits an n-person nondictatorial

Arrow-type social welfare function if and only if it admits an n-person

nondictatorial, nonmanipulable and noncorruptible social choice corres-

pondence. We also characterize all the sets of restricted domains of

preferences which admit two-person Arrow-type social welfare functions

(and therefore also admit two-person nonmanipulable and noncorruptible

social choice correspondences).





1. Introduction

Given the impossibility results derived by Arrow in his seminal book

"Social Choice and Individual Values" on the possibility of constructing

nondictatorial social welfare functions, and by Gibbard [7] and by

Satterthwaite [18] on the possibility of constructing nondictatorial and

nonmanipulable (strategy-proof) social choice functions, much of the re-

cent literature on social welfare and social choice functions falls into

two categories. One category includes efforts to derive possibility re-

sults by relaxing some of the criteria introduced by Arrow [1], by

Gibbard [7] and by Satterthwaite [13] as desirable characteristics for

social welfare and for social choice functions, while the other Includes

attempts to obtain possibility results by restricting the domains of

preferences available to the individuals (for a comprehensive and de-

tailed description of many of these efforts see Sen [23] and Kelly [12]).

The appeal of the "restricted domains" approach is in the observation

that in most standard economic models, a considerable structure is im-

posed both on the Individuals' preferences (e.g., assuming Individuals

with continuous and concave utility functions) and on the social alter-

natives (e.g., assuming economies with public goods only, with private

goods only, etc.), thus results derived in social choice theory following

this approach may be applicable to other economic models too.

The first to demonstrate the possibilities inherent in the "restricted

domains" approach were Black [2] and Arrow himself ([1], page 75) who

proved that majority rule is a nondictatorial social welfare function for

groups of individuals with "single-peaked preferences". Arrow [1, Chap.

II] also discusses the "difference between the ordering (done by an
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individual) of the social states according to direct consumption of the

individual and the ordering when the individual adds his general stan-

dards of equity." He refers to the first type of ordering as reflecting

an individual's "tastes" while the second reflects his "values." He

demonstrates that this distinction can be represented as restrictions on

the individuals' domains of preferences (when an individual orders by

"taste" he must be indifferent between any two social alternatives which

allocate to him the same (private) alternative) and he goes on to prove

that this distinction by itself is not enough to guarantee the existence

of a "desired" social welfare function ([1] theorem 3 and also Blau [3]).

In the model discussed here the "restricted domains" approach is

used to emphasize both differences between the way individuals choose

their preferences (according to "values" versus "tastes") and differences

among types of alternatives (e.g., public goods as opposed to private

goods). For this purpose, when dealing with the possibility of aggre-

gating individuals' preferences into a social welfare function or a social

choice function, we distinguish among three types of "restricted domains."

Cases where individuals order (or choose among) the alternatives accord-

ing to their "values" are cases of public alternatives only; cases where

individuals order according to their "tastes" are cases of private al-

ternatives only, and cases where individuals order the social alternatives

according to their "tastes" and in addition the social alternatives are

such that part of each alternative affects all the individuals together,

while other parts affect each individual separately, are cases of mixed

alternatives.
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This distinction may be demonstrated by the following example. If a

group of individuals (rational, of course) must choose a cake from among

a variety of flavors, it is a case of public alternatives. If the same

group must decide how to divide a given cake among its members, and each

individual considers only the amount allocated to him when comparing dif-

ferent allocations (thus he is indifferent between any two allocations

that give him the same piece of cake), it is now a case of private al-

ternatives. On the other hand, if individuals give importance not only

to the amount allocated to them but also to the amounts allocated to

other members of the group, then it is again a public alternatives case.

If the group must simultaneously decide on the flavor of the cake and

its apportionment and each individual considers only what Is allocated

to him when comparing the same flavor but different divisions, then it

is a case of mixed alternatives.

This work is an investigation of the possibility of constructing

Arrow-type social welfare functions and Gibbard-Satterthwaite-type social

choice correspondences for the case of mixed alternatives. We assume

that every social alternative is a mix of public and private alternatives,

individuals may differ in their sets of private alternatives as well as

in their domains of preferences, and indifferences among alternatives

are allowed. The principal result for this most general case Is that a

set of n (greater than one) restricted domains admits an n-person non-

dictatorial Arrow-type social welfare function if and only if it admits

an n-person nondictatorial, noncorruptible Gibbard-Satterthwaite-type

social choice correspondence, namely a nondictatorial, noncorruptible,

nonmanipulable, rational and efficient social choice correspondence.
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Intuitively a noncorruptible social choice correspondence is a choice

correspondence for which no individual can, by misrepresenting his true

preferences, change the social outcome without changing the value of it

for himself. This concept is a generalization of the Sattherwaite-

Sonnenschein [20] concept of nonbossiness. In their model they discuss

strategy-proof allocation mechanisms in classical economic environments,

and such a mechanism is bossy if an individual can, by misrepresenting

his true preferences, change the bundles allocated to other individuals

while maintaining his unchanged. Thus a mechanism can be bossy over

private goods only, while a social choice correspondence may be corrupt-

ible over public and mixed alternatives as well, as is demonstrated in

a later example (section 3). Although both manipulable and corruptible

social choice correspondences include "strategic" behavior of individuals

who misrepresent their "true" preferences, there is a conceptual differ-

ence between the two. A person manipulates a mechanism if, by behaving

"strategically", he improves his position directly ; he corrupts a social

mechanism if, by changing the value of the outcome to others (without

altering its value for himself), he creates the possibility of his in-

directly improving his position by opening room for either "bribe taking"

or "blackmailing". We also characterize all the sets of two or more re-

stricted domains of preferences which admit two-person Arrow-type social

welfare functions (and therefore two-person noncorruptible Gibbard-

Satterthwaite-type social choice correspondences).

This work builds on, complements and generalizes a number of previous

contributions. The most significant of them are results derived by Kalai-

Muller [8] and Maskin [13, 14], They independently characterized all
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the restricted domains of strict preferences (no indifferences among al-

ternatives are allowed) which admit Arrow-type social welfare functions

for the case of public alternatives only when all individuals have the

same restricted domain of preferences. In addition they proved that

such domains admit Arrow-type social welfare functions if and only if

they admit rational, nonmanipulable, efficient and non-dictatorial social

choice functions. (Since indifferences are not allowed, all such func-

tions are also noncorruptible.) This further demonstrated the close

reciprocity between the Arrow set and the Gibbard-Satterthwaite sets of

criteria, a demonstration that started with the works of Gibbard [7]

and Satterthwaite [19] combined. (Pattanaik [15] proved one direction of

the equivalence for the cases in which individual preferences may be

restricted and a discussion of the possibility of full equivalence for

these cases appears in Blin-Satterthwaite [4 J.) Kalai-Ritz [9] char-

acterized all the restricted domains of strict preferences which admit

Arrow-type social welfare functions for the case of private alternatives

only and individuals which are symmetric in both their alternatives and

preferences set. Ritz [17] generalized the Kalai-Ritz [9] results for

the case of private alternatives, nonsymmetric individuals and with in-

differences among alternatives allowed. He also proved, parallel to

Kalai-Muller [8] and Maskin [14], that sets of restricted domains admit

Arrow-type social choice functions if and only if they admit nonmanip-

ulable, noncorruptible, rational and non-dictatorial social choice cor-

respondences.

As all these models are special cases of the mixed alternatives

model discussed here (if all the private alternative sets contain
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exactly one element and all the restricted domains are the same and con-

tain only strict preferences then the mixed alternatives model is re-

duced to the models discussed by Kalai-Muller [8] and Maskin [13],

[14], while if the public alternatives set contains one element only,

then the general model is reduced to the cases discussed by Kalai-Ritz

[9] and Ritz [17]), thus our results unify and generalize some of the

results derived by all the other authors. The drawback of this model is

that we did not prove completely the independence between the existence

of Arrow-type social welfare functions for a group and its size, and

therefore we characterized only those sets of restricted domains which

admit two-person Arrow-type social welfare functions, while all the pre-

viously mentioned works characterize, for their respective cases, all

the restricted domains which admit Arrow-type social welfare functions

for any finite (and greater than one) number of individuals. We also

proved the equivalence between the Arrow type social welfare functions

and the Gibbard-Sattherthwaite type social choice correspondences only

for Arrow social choice functions which obey positive association and

therefore appears to be less general. However, since to quote Arrow

([1], page 25), "We are trying to describe social welfare and not some

sort of illfare" we do not consider this as a major drawback.

The definitions and some preliminary results are introducted in

section 2. In section 3 we prove the equivalence between Arrow-type

social welfare functions and noncorruptible Gibbard-Satterthwaite-type

social choice correspondences. In section 4 we characterize all the

sets of restricted domains which admit two-person social choice func-

tions, and in section 5 we convey some results on the dependency (or
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independency) between the number of individuals and the existence of

Arrow-type social welfare functions.

2. Definition and Preliminary Results

Consider a finite set N of n individuals (n ^ 2). Let A (|A
q |
^ 1)

denote the set of all public alternatives available to all the individuals

as a group. For every individual j e N and every a £ A«, let A (a) be

the nonempty set of all private alternatives which are available to indi-

vidual j when alternative a is available to the group. Let

(A
n
;A.) = {(a;x)|a£ A~ and x€ A. (a)}, then E. denotes the set of all

reflexive, transitive and complete binary relations on (A
n
;A.). An ele-

ment of E . is called a preference relation. If for some
J

j

(a;x),(b;y)£ (A.;A ) and r 6 I . it is both (a;x)r(b;y) and (b;y)r(a;x)

then it is alb in r ((a;x) is indifferent to (b;x)) and if for some

r' G E. it is (a;x)r'(b;y) and not (b;y)r'(a;x) then it is (a;x)p(b;y)

in r' ((a;x) is preferred to (b;y)).

Let Q, be a nonempty subset of E .; the elements of Q . are the ad-

missible preference relations for individual j. Throughout this work

we assume that any two alternatives are distinguishable, i.e., for every

j
e N, and every (a;x),(b;y) € (A

Q
;A ), if for no r G P. . it is (a;x)p(b;y),

then there exists r' G ft such that (b;y)p(a;x) in r 1
. Let

(A, . A <n)

Q
;A

V ;
) - {(x ; X;L ,...,xn )| (x

Q
;x.) G (A

Q
;A ) for every j € N} . An ele-

ment of (A
Q
;A ), X = (x

n
;x.,...,x ) is called an n-person social al-

ternative (or n-person mixed alternatives allocation). Let A repre-

sent the set of all reflexive, transitive and complete binary relations

on (A ;A ). An n-person social function (SF) over mixed alternatives

is a function h :Q +A where Q = ft,xQ„*...xn . An element of12 n

8 , R = (r-,...,r ) is called an n-person profile . If for a profile

R and social alternatives X and Y it is both Xhn
(R )Y and Yhn(R)X then
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it is XIY (X is indifferent to Y in h
n
(R)), and if it is Xh

n
(R)Y but not

Yh
n
(R)X then it is XPY (X is preferred to Y in h

n
(R)). h

n
an n-person

SF is an n-person social welfare function (SWF) if it obeys the follow-

ing conditions:

i) Unanimity (U): For every X,Y e (A
Q
;A

(n)
) and R£ ft

(n)
if for

every k € N, (x-.;x, )r, (y..;y, ), and there exists j£ N such that

(x ;x.)p(y ;y ) in r then XPY, and if for every k S N, (x
Q
;x
k
)i(y ;yk )

in r, then XIY.
k

ii) Independence of irrelevant alternatives (IIA): For every

X,Y e (A ;A
(n)

) and R,S £ Q
(n)

if [for every k 6 N , Cx^^y^) iff

(x ;x
k
)s
k (y ;yk } and (y ;yk

)r
k
(x ;x

k ) iff (y ;yk
)s
k
(x ;x

k )] then

Xh
n
(R)Y iff Xh

n
(S)Y.

A SF is dictatorial (D) if there exists j G N, s.t. for every

X,Y e (A
Q
;A

(n)
) and R e a"1

', (x
Q
;x )p(y

Q
;y ) in r implies XPY. A SF

is nondictatorial (ND) if it is not dictatorial. An n-person Arrow

social welfare function (ASWF) is a nondictatorial SWF.

We say that 9 admits an m-person ASWF (m <^ n) if there exists

(V)
K = {i.,...,i } C N, such that Q = 9. * Q. x ... x a admits an

i m i, i_ i12 m
m-person ASWF. (Throughout this work, if X = (xn ;x.. , .. . ,x ), then

U 1 n

X. = (XqJx. , . . . ,x ._. ,x ,_j_, , . . . ,x ) and X_.|y = (x_;x., . . . ,x. . ,y,

x
j+1

,...,x
n)).

Since in the definition of an ASWF we allow for a group indifference

between bundles of alternatives even if not every individual is indiffer-

ent between his respective alternatives, we first investigate the sig-

nificance of this, especially the possible existence of a "trivial"

ASWF, in the sense that the group is indifferent between every two
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bundles of alternatives over which there is no unanimous agreement among

the group's members, (Kalai-Muller [8], Maskin [13] and Kalai-Ritz [9]

all assumed in their respective works that a social welfare function is

an antisymmetric, complete and transitive ordering of the social alter-

natives, thus eliminating the possibility of such an ASWF).

In lemma 1 we demonstrate that there are sets of restricted domains

for which no "trivial" ASWF exists, while in lemma 2 we prove that if a

set of restricted domains admits an ASWF which is not "trivial," then it

also admits an ASWF which allows indifferences among social alternatives

only if every individual in the group is indifferent to all of them.

For n ^ 2, g is a Pareto unanimity collective choice rules (Pareto CCR)

(Sen [21]) over mixed alternatives if for every X,Y £ (A~>A ^ anc*

R 6 .Q

(n)
it is xpy in g

n
(R) iff for every j € N it is (x

Q
;x )r (y

Q
;y )

and for at least one individual k it is also (x
n
;x, )p(yn ;y, ) in r, ; in

any other case it is XIY in g (R).

Lemma 1 ;

If Q is such that for at least one k € N, there exist r £ fl, and
k

(x
Q
;a),(x ;b),(x ;c) e (A^A^ such that (x ;a)p(x ;b)p(x ;c) in r and

for at least another % e N [A (x
Q ) [ >^ 2, then the Pareto CCR defined

on Q
n

, is not an ASWF.

Proof .

Without loss of generality (w.l.o.g.) assume k = 1, % - 2 and let

(x
Q
;x),(x ;y) S (A

Q
;A

2
) and r

2
£ Q.

2
such that (x ;x)p(y ;y) in r

2
»

Also for j = 3,...,n let (x_;x.) e (A.;A.) and r. S fl . Consider the

mixed bundles X =» (x
rt
;c,x,x,, . . . ,x ), Y (x-.;a,y,x_, . . . ,x ),

u j n U J n
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Z = (x ;b,y,x_, . . . ,x ) and the profile R = (r,r_,...,r ), then by the
u j n 2. n

definition of g , the Pareto CCR, it is XIYPZIX in g (R), hence g is

not transitive and therefore it is not an ASWF. Q.E.D.

Lemma 2 :

If 9. admits f
n

an n-person ASWF which is not a Pareto CCR, then

P. admits h an n-person ASWF such that for every X,Y £ ^n'^ ^' anc*

R e P. \ XIY in h
n
(R) iff (x

Q
;x.)i(y ;y.) in r. for every j € N.

Proof .

The ordered set of individuals (j, ,j~f*»»»j ) is lexicographically

decisive over a set of bundles of alternatives, if for any two bundles

X,Y in the set, the group prefers X to Y iff for some k, 1 <_ k <^ n, in-

dividual 1 prefers his X alternative to his Y alternative, while every

individual j , % = l,...,k-l, is indifferent between his alternatives

(we also say that X is lexicographically preferred to Y by (j, ,»»»>j ))•

Since f
n

is not a Pareto CCR, there exist X,Y (A
Q
;A
W

) and

R G Q Such that w.l.o.g. (x^x^pCy^y ) in r^ (y ;y
2
)p(x

Q
;x

2
) in

r
2

, and XPY in f
n
(R). Define h

n
as follows. For every X,Y G (A

Q
;A^

n)
)

and R e ?S
n\ XIY in h

n
(R) iff (x

Q
;x.)i(y ;y .) in r. for every j^N;

XPY in h
n
(R) if XPY in f

n
(R) or if XIY in f"(R) and (2,3, . . .,n,l) lexi-

cographically prefer X to Y. It can be easily demonstrated that h is

reflexive, complete and obeys U, IIA and ND and the proof Is omitted.

To complete the proof that h is an ASWF we now prove that it is transi-

tive. (Throughout this work, to prove that a binary relation r is

transitive, we prove that for every a,b,c (i) apb and bpc imply ape and

(ii) aib and bic imply aic, in r (e.g., see Sen [20] for analysis of
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binary relations).) By the definition of h and the transitivity of all

r , if for some X,Y,Z € (A
Q
;A

(n
^) and R£ &

(n)
XIYIZ in h

n
(R), then also

XIZ in h
n
(R). Thus suppose for some X,Y,Z e (A

Q
;A

(nO and R£ ST
n '

XPYPZ in h
n
(R). This implies Xf

n
(R)Yf

n
(R)Z. If also XPZ in f

n
(R), then

by definition XPZ in h
n
(R). So assume XIZ in f

n
(R), which implies XIYIZ

in f
n
(R). Hence X is lexicographically preferred to Y and Y is lexico-

graphically preferred to Z by (2,3, . . . ,n,l). Let k be the first indi-

vidual in (2,3, . . . ,n,l) such that (x.,;x, )p(y~;y, ) in r, and let % be the

first individual in (2,3, . . . ,n,l) such that (yn ;y )p(z n ;z ) in r . Let

j = min{k,Jt}, then by the transitivity of r. (x_;x )p(z ;z .) in r and

(x~;x )i(z_;z ) in r for m = 2,. ...1-1. Since also XIZ in f (R) then
(J m U m m

by definition XPZ in h
n
(R). Q.E.D.

h —an n-person ASWF satisfies the positive association (PA) condi-

tion, if for every X,Y e (A
Q
;A^

n
') and R,R' G 9.^ such that for every

]
£ N (x

Q
;x )r (y

Q
;y ) implies (x

Q
;x )r'(y

Q
;y ) and (x

Q
;x )p(yQ ;y

) in

r implies (x
Q
;x )p(yQ ;y

) in r» XPY in h
n
(R) implies XPY in h

n
(R').

Observe that lemma 2 can be slightly modified as to be:

Lemma 3

If P. admits f an n-person ASWF which satisfies the PA condition

and is not a Pareto CCR, then (2 ' admits h
n

an n-person ASWF which

obeys the PA condition and such that for every X,Y S (A
fi
;A ) and

R e
ft
(n)

, XIY in h
n
(R) iff (x

Q
;x )i(y

Q
;y ) in r for every j£N.

Proof

Define h as in the proof of lemma 2. Suppose for some

X,Y e (A
Q
;A

(n)
) and R,R' 6 Q

(n)
such that for every j e N,

(x
Q
;x )r (y

Q
;y ) implies (x

Q
;x )r'(y

Q
;y ) and (x

Q
;x )p(y

Q
;y ) in r
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implies (x
Q
;x.)p(y ;y.) in r*., XPY in h

n
(R) and Yh

n
(R' )X. Since f

n

satisfies PA, it cannot be the case of XPY in f (R), thus it must be

XIY in f
n
(R). Let k be the first individual in (2,3, . .. ,n,l) such

that (x
Q
;x
k)p(yC)

;yk
) in r

fc
. This implies (x

Q
;x
k)p(y ;yk

) in r
fc

, hence

it must be both YPX in h
n
(R') and XIY in f

n
(R' ). Let m be the first

individual in (2,...,n,l) such that (yQ ;y
)p(x

Q
;x ) in r', then it must

be both (y„;y )p(xrt ;x ) in r and m < k, which contradicts XPY in h (R).
m m m

Q.E.D.

Let n be the set of all nonempty subsets of (A.,;A ). An

n-person social choice correspondence (SCC) over mixed alternatives is

a correspondence H
n

: P.' x IT » IT. A SCC is a rational social

choice correspondence (RSCC) if for every B G H and R6 fi it sat-

isfies:

1. Feasibility (F): H
n
(R,B) C B.

2. Independence of nonoptimal alternatives (INOA): For every

C C B, if H
n
(R,B) n c £ then H

n
(R,C) = H

n
(R,B) <~i C .

3. Unanimity (P): For any X,Y ^B, if for every j e N,

(x
n ;x ,)r .(yn ;y .) and there exists k G N such that

(x ;x
k)p(yQ ;yk

) in r
fe

, then Y f H
n
(R,B).

4. Uniqueness (UQ): If X € H
n
(R,B) then Y e H

n
(R,B) iff

(x
Q
;x )i(y

Q ;y
) in r for every j € N.

Since in the definition of a SCC we do not restrict the choice set

to include a single social alternative only, we thus avoid the need for

a tie-breaking function (needed to choose a unique social outcome among

the alternatives over which the group is indifferent (see Satterthwaite

[19])), however this gives rise to two different manipulability concepts.
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H , an n-person SCC is point-manipulable if there exist B G II ,

R,R ? G £1 and k e N such that r. J* r', for any other j£N (j j* k)

,

r. = r'., and there exist X G H
n
(R',B) and Y £ H

n
(R,B), such that

(x_;x, )p(y ;y, ) in r, . H , an n-person SCC is set-manipulable if there

exist B e n
(n)

, R,R» e n
(n)

and k e N such that r t r* while for any
K. K.

other j £ N (j £ k), r - r', and for every X G H
n
(R',B) and for every

Y G H (R,B) it is (x
Q
;x, )p(yQ ;y, ) in r, . If H is not point-manipulable

or not set-manipulable it is said to be point-nonmanipulable , or

set-nonmanipulable respectively.

Fortunately, these two concepts are equivalent for rational social

choice correspondences, as is established by the following lemma.

Lemma 4

A rational social choice correspondence is point-manipulable iff

it is set-manipulable.

Proof

Part a . Suppose H , an n-person RSCC is point-manipulable by individual

k. Hence there exist B € II , R,R' e £T
n

^ such that r, £ r' r,, = r'
k k* j j

for every j € N such that j j
4 k, and for some X e H (R,B) and

YG H
n
(R',B) it is (yQ ;y

)p(x ;x.) in r . This implies, by DQ, that

Y 4. H
n
(R,B) and X £ H

n
(R',B). Let C = {X,Y}; since C c B then by con-

dition INOA, it is {X} = H
n
(R,C) and {Y} = H

n
(R',C), hence H

n
is also

set-manipulable.

Part b . If H , an n-person RSCC is set-manipulable it is obviously also

point-manipulable. Q.E.D.
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Since in this work we are concerned with rational SCCs only, there-

fore from now on we use only the concept of manipulable (nonmanipulable

(NM)) SCC and do not distinguish between point and set manipulability.

H , an n-person SCC is corruptible if there exist B^II ,

R,R' e q"1
' and k e n such that r

fc
f r£, for any other j € N (j t k)

r. = r'., for some X^ H
n
(R,B) and Y^ H

n
(R',B) it is (x^x^!^^) in

both r and r' and Y 9 H
n
(R,B). H is noncorruptible (NC) if it is not

corruptible. As we mentioned before, the corruptibility notion is a

generalization of the bossiness concept of Satterthwaite and

Sonnenschein [20]. The following example is of a corruptible but not

bossy SCC.

Consider a group of three individuals with a set of three public al-

ternatives A = {a,b,c} and the following restricted domains of prefer-

ences: Q = {r-}, Q- = {r-}, 9.^ = {r^r^r^} where apbpc in r^, cpbpa

in r_, apbic in r- and bicpa in r,. Define {a} = F(R,B) for every

R e o x n x n and every B C A such that a G B,

{b} = F((r
1
,r

2
,r

1
),{b,c}) = FCC^.r^), {b,c} ) and {c} = F((r

1
,r

2
,r

4
),{b,c} )

and {b} = F(R,{b}), {c} - F(R,{c}) for every R € fi x Q x 9.y It is

easy to verify that F is a nonmanipulable but corruptible (by individual

3) rational social choice correspondence. The question of whether or

not there are restricted domains which admit nonmanipulable and cor-

ruptible social choice correspondences but do not admit nonmanipulable

and noncorruptible social choice correspondences is still an open one.
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(n)
r any B e rp , let B. = {(x ;x) e (A ; A.) | there exists X_ [x in B}

.

H , an n-person SCC is dictatorial (D) if there exists j € N, such that

for every BE II
(n)

, R6 ft
(n)

and X€ H
n
(R,B) (x

Q
;x .)r .(y ;y.) for every

(y ;y.) € B.. H
n

is nondictatorial (ND) if it is not dictatorial. A

SCC is Gibbard-Satterthwaite type social choice correspondence (GSSCC)

if it is a nonmanipulable , nondictatorial and rational social choice

correspondence. If it is also noncorruptible then it is an extended

GSSCC .

We say that ft admits an m-person GSSCC over mixed alternatives if

there exists RC n, K = {i, ,i„, ... ,i }, such that ft ' = ft. * ft. x ... x ft.— 1 z m i. i_ 1

admits an m—person GSSCC.

2. Equivalence Between Arrow Social Welfare Functions and Noncorruptible
Gibbard-Satterthwaite Type Social Choice Correspondences

Theorem 1

Let (A_;A ) be a finite set, then for every n and m such that

n >^ m >^ 2, Q admits an m-person noncorruptible Gibbard-Satterthwaite

type SCC iff it admits an m-person Arrow SWF which satisfies the posi-

tive association condition and which is not a Pareto CCR.

Proof

Part a .

Assume that 9. admits a an m-person noncorruptible GSSCC, and

w.l.o.g. assume that K = {l,2,...,m}, i.e., ft = ft. * ... x ft admits
1 m

H , thus ft and ft will be used interchangeably. Define

h
m

: ft

(m)
> A

(m)
as follows. For every X,Y 6 (A ;A

(m)
) and Re ft

(m)
,

m
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Xh
m
(R)Y iff X£ H

m
(R,{X,Y}). We prove that h™ is an ASWF in three steps:

1. h
m

is a SF, 2. h
m

is a SWF, and 3. h
m

is an ASWF.

Step 1 . Since for no B G IT™' and R € a^
m

' ± s H^R.B) empty, therefore

for every R e Q
(m)

and every X,Y €E (A ;A
(m)

), X e H
m
(R,{X}) and either

X «= H
m
(R,{X,Y}) or Y e H^R.U.Y}) (or both). Hence h™ is both reflexive

and complete. Suppose for some X,Y,Z e
^An»^ ) an(* R e ^

XIYIZ in h
m
(R). This implies both {X,Y} = rf^R.U.Y}) and

{Y,Z} = E^(R,{X,Y>). Then by the UQ condition it must be

(x
n
;x .)i(y_;y .)i(z-;z .) in r. for every j = l,...,m, which implies

{X, Z} = H^R^X, Z} ) and therefore XIZ in h
m
(R). Suppose for some

X,Y,Z 6 (A ;A
(m)

) and R 6 p.
(m)

it is XPYPZ in h
m
(R). Let B = {X,Y,Z},

then XPY and YPZ imply both Y? H^R, {X,Y}) and Z ? H
m
(R,£Y,Z}) 1 and

by INOA Y £ H
m
(R,B) and Z f H

m
(R,B). Therefore it must be

{X} = H
m
(R,B), by INOA {X} - H^R.U.Z}), and by definition XPZ in

h
m
(R).

Step 2 . UQ and P for H
m

, together imply that h
m

satisfies unanimity.

Suppose h doesn't satisfy IIA, i.e., (w.l.o.g.) there exist

X,Y G (A ;A
(m)

), R,S € Q
(m)

such that for every j£K, (x
Q
;x )r (y

Q
;y )

iff (x ;x
j
)s

j
(y ;y

j
), (y^y^r.^;^) Iff (y

()
;y

j
)s

:j

(x ;x
j
), Xh

m
(R)Y

and YPX in h
m
(S), which in turn implies {Y} = R^CS.IXjY}). By UQ this

implies that not for every j G K, (x
Q
;x .)i(y

Q ;y
) in s and r . This

together with X € H
m
(R,{X,Y}) imply {X} - h

m
(R,{X,Y}. Applying the

method used by Schmeidler and Sonnenschein [20], let T~ =» R and for

j = l,...,m let T. = (s .,... ,s .,r ,..., r ); w.l.o.g. assume that for
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j = l,...,m
1

(x
Q
;x )p(y

Q ;y
) in r and s , for j = ntj+1, . . . ,m

2

(y ;yjp(x ;x ) in r and s and for j = m
2
+l,...,m (x

Q
;x .)i(y

Q ;y
.) in

r. and s.. Let k be such that {Y} = H^T. ,{X,Y}) and {X} - H^T.^X.Y})
J j k J

for j = l,...,(k-l). Obviously l<k<^m. If k < m. then H is

manipulable by individual k, a contradiction. Hence m- < k _< m. But

then a is corruptible by individual k, again a contradiction, hence

h obeys IIA.

Step 3 « Suppose there exists individual k € K such that for every

R€ p/
m

> and every x,Y € (A ;A
(m)

), (x ;x
k)p(y ;yk

) in r
k

implies XPY

in h (R). Since H is not dictatorial then there exists B G H and

R e 9. such that for some X,Y £ B, (y_;y, )p(xn ;x, ) in r, and

X e H
m
(R,B). By INOA this implies X S H^R.iX.Y}) and, therefore by

UQ, Y? H
m
(R,{X,Y}), hence XPY in h

m
(R), a contradiction. This com-

pletes the proof that h is indeed an Arrow SWF. Since a satisfies

OQ, therefore h is not a Pareto CCR. Suppose h doesn't obey PA, then

there exist X,Y 6 (A ;A^
m)

) and R,R' € o/m ) such that for every j € K,

(x ;xj)rj(y ;yj) implies (x^x^r'Cy^yj), (x^x^pCygjyj) in r.. im-

plies (x ;x.)p(y
Q
;y ) in r* XPY in h

m
(R) but Yh

m
(R')X. XPY in h

m
(R)

implies that for at least one individual k e K, it is (x ;x, )p(y„;y, )

in r, (and therefore also in r,), thus {X,Y} fi a (R',{X,Y}) and we may

assume YPX in h (R T
). Since h obeys IIA there must be at least one

individual £ € N who changed his preferences between (xn ;x ) and

(yA»y,)' Suppose exactly one individual % changed his preferences,

and w.l.o.g. assume £ 1, thus we may assume r = r' for j 2,...,m.
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Case 1 . (y ;y
1
)p(x ;x

]L

) in r., and (x ;x
1
)r

1
(y ;y1

). In this case H™

is manipulable by individual 1 when his "true" preference is r. , a

contradiction.

Case 2 . (y ;y
1
)i(x

()

;x
1
) in r^ and (x ;x

1
)p(y ;y

1
) in rj. Then H™ is

manipulable by individual 1 when his "true" preference is r', again a

contradiction.

Suppose more than one individual changed his aind. W.l.o.g. assume

that these individuals are 1,2,... ,£ (notice that % < m). Using the

Schmeidler-Sonnenscheim [21] method, let T_ = R and

T. = (r^,...,r'.,r.
+1

,...,r
m

) for j = !,...,<>. Sir.ce {X} - rf^Tg, {X, Y})

and {Y} - H^T^ ,{X,Y} ), let k be the first integer such that

{Y} = H^T , {X,Y}), then by cases 1 and 2 above, H
m

is manipulable by

individual k, a contradiction. Hence h obeys PA.

Part b .

Assume that 9. admits h an m-person Arrow SWF which obeys the

PA condition and which is not a Pareto CCR, and w.l.o.g. assume

K {l,2,...,m}, i.e., 9. admits h . By lemma 4 we may assume that

for every X,Y G (A
Q
;A

(m)
) and R6 9.^

m\ XIY in h
m
(R) iff (x

Q
;x )i(y

Q
;y.)

in r. for every i G K. Define H as follows.

For every B£ n
(m)

and R G fl

(ra)
, X G H

m
(R,B) iff X € B and Xh

m
(R)Y

for every Y G B. We first prove that H™ is a RSCC and then that it is

also a NC GSSCC. Since (A
fl

;A O is a finite set, so is also every

B G n
m

and therefore for every B there exists X G B such that Xh
m
(R)Y

for every Y G B (h is complete and transitive), hence H obeys feasi-

bility. Suppose there exist C,B G n
(m

' and R G p/
m)

such that C C B,

H
m
(R,B) ncM and rf^R.C) + H^R.B) n C.
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Case 1 . There exists X' € H
m
(R,C) such that X' ? H

m
(R,B). Since

H
m
(R,B) nc^U there exists another Y e C such that Y 6 H

m
(R,B).

Since X' g H^R.B), then it must be YPX' in h
m
(R), and since Y € C,

then by definition X £ H
m
(R,C), a contradiction.

Case 2 . There exists X' 6 H
m
(R,B) n c and X 1 9 H

m
(R,C). Since

H
m
(R,C) j* 0, there exists Y 6 c such that Y € H

m
(R,C); this together

with X' ? H
m
(R,C) imply YPX' in h

m
(R). By definition, since Y,X' £ B,

it implies X' f H^R.B), a contradiction. Hence H™ obeys INOA.

Since h obeys U, then by definition H obeys P. The assumption

that XIY in h (R) if and only if every individual is indifferent be-

tween X and Y, guarantees that n obeys UQ. This completes the proof

that H
m

is a RSCC. Suppose H is manipulable. Then there exists

R,R' £ fi

(m)
, B € n^

m)
and X,Y G B such that w.l.o.g. r

±
? rj, r. = r'.

for every j - 2,...,m, X € H
m
(R,B), Y € H

m
(R\B) and (y ;y

1
)p(x ;x

1
)

in r . (y ;y )p(x
Q
;x ) in r implies both Y £ H

m
(R,B) (because of UQ)

and the existence of k 6 K (k > 1) such that (x
Q
;x, )p(yQ ;y,)

in r.

(otherwise P is violated); since r, = r/, then it implies X £ H^R' ,B).

Together these imply XPY in h
m
(R) and YPX in h

m
(R' ), which either con-

tradicts the assumption that h obeys IIA or the assumption that it

obeys PA, hence h is nonmanipulable. Suppose H is corruptible, then

there exist R,R* G $T , B G IT
m

' and X,Y € B such that w.l.o.g.

r
l ' r

l'
r> " r

i
f° r j

= 2 » •••>*» X G H
m
(R,B), Y € H

m
(R',B), Y € H

m
(R,B)

and (x_;x.. )i(y ;y.) in both r. and rj. This implies both XPY in h
m
(R)

and YPX in h
m
(R'), which contradicts the assumption that h satisfies
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IIA, hence H is noncorruptible; which completes the proof that h is

a noncorruptible GSSCC.

Q.E.D.

3. Characterization of the Sets of Restricted Domains
Admitting Two-Person Arrow Social Welfare Functions

We first characterize all the sets of restricted domains of prefer-

ences which admit two-person Arrow SWFs and then, in light of theorem 1,

we show that we also have characterized all the sets which admit two-

person noncorruptible Gibbard-Satterthwaite type SCC. Let

F = {(X,Y)e (A l^
2h x (A

Q
;A

(2)
) there exists r^ 12 such that

(X-.JX. )p(yn ;y. ) in r.}, F contains all the ordered pairs of social

alternatives where the first individual can strictly prefer the alter-

native allocated to him in the first social alternative, to his second

mixed alternative. We refer to F as the feasible set . Let C = {(X,Y)

F there exists r' e Ji_ such that (yn
;y~)p(x

n
;x«) in r'}. C contains

all the ordered pairs in the feasible set, over which the second

individual can create conflict of interests with the first individual.

C is the conflict set . We say that D £ (a ;A
(2)

) x (A ;A
(2)

) is

closed under decisive implications (CUDI) if the following conditions

hold for every X,Y,Z e (A
Q
;A

V ').
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Gla. If for some r. S R and r
2
G 9^ (x ;x

1
)p(y ;y

1
)r

1
(z ;z

1
),

(y ;y
2
)r

2
(z ;z

2
)p(x ;x

2
) and (X,Y) G D then (X,Z) G D.

Gib. If for some rG R (x^x^pCygjy^pCzgjzp In r and

(X,Y),(Y,Z) G D, then (X,Z) G D.

G2a. If for some r. € fi^ and r
2
G fi

2 , (x ;x
1
)r

1
(y ;y1

)p(z ;z
1 ),

(z ;z
2
)p(x ;x

2
)r

2
(y ;y

2
) and (Y,Z) G D then (X,Z) G D.

G2b. If for some rG Q^ (x
Q
;x

2
)p(y ;y

2
)p(z ;

z

2
) in r and (Z,X) G D,

then either (Z,Y) G D or (Y,X) G D.

(2)
We say that 9 is decomposable if there is a D which is closed under

(?)
decisive implications. 9 has a nontrivial decomposition if it is

decomposable with a D such that (F-C) ^ D <^ p.

Intuitively D contains all the ordered pairs of social alternatives

over which the first individual is decisive. Thus D^ F guarantees that

he is not a dictator while (F-C) •j D guarantees that the second indi-

vidual is not a dictator. We say that 9 has a nontrivial decomposition

if there exist j,k e N such that 9 .*9 has a nontrivial decomposition.

Theorem 2

9 admits a two-person Arrow SWF which is not a Pareto CCR, over

mixed alternatives, iff it has a nontrivial decomposition.

Proof :

Part a .

Assume that 9 has a nontrivial decomposition. W.l.o.g. assume

(2)
that j = 1, k = 2 are such that 9 ' = 9 xQ. has the nontrivial



-22-

2 (2)
decomposition. Define h as follows. For every X,Y G (A

n
;A ') and

R6Q< 2
\

2
a. XIY in h (R) iff (xgjx^KyQ^) and (xg;x

2
)i(y ;y2

) in r, and r
2

respectively;

b. XPY in h
2
(R) if

(i) (x ;x
1
)r

1
(y ;y

1
), (x

Q
;x

2
)r

2
(y ;y

2
) and either

(x ;x
1
)p(y

Q
;y

1
) or (x

Q
;x

2
)p(y ;y

2
) (or both), or

(ii) (x ;x
1
)p(y ;y

1
) in r^ ((y ;y

2
)p(x

Q
;x

2
) in r

2
) and

(X,Y) G D, or

(iii) (x ;x
9 )p(yQ ;y2

) in r
2

((y ;y
1
)p(x ;x

1
) in r^) and

(Y,X) £ D.

2
To prove that h is a two person Arrow SWF, first observe that part (a)

2 (2)
of the definition implies Xh (R)X for any X G (A

Q
;A ) and every

(2) 2 2
R S Q , thus h is reflexive. Then notice that if h is not a cora-

(2) (2)
plete order, then there exist X,Y E (A

Q
;A ) and R 6 fl ' such that

2 2 2
neither Xh (R)Y nor Yh (R)X. Since it is not XIY in h (R), then it must

either be the case of (x
n
;x. )p(y_;y. ) and (y-;y„)p(x_;x„), or be the case

of (y ;y
1
)p(x ;x

1
) and (x

Q
;x

2 )p(y ;y2
) in r^ and r

2
respectively.

W.l.o.g. assume (x^x^pCy^y^ in r. and (y ;y
2
)p(x

Q
;x

2
) in r

2
(since

these two cases are symmetric to each other). This together with not

Xh
2
(R)Y imply (X,Y) £ D, but by part (b.(iii)) in the definition, it

2
then must be YPX in h (R), a contradiction. Parts (a) and (b.(i)) imply

2 2
that h obeys the unanimity condition, and since h was defined for

pairs of social alternatives only, it also obeys the IIA condition.

2
Thus to demonstrate that h is at least a social welfare function, it

is only left to prove that it obeys transitivity. Suppose it is not a



-23-

(2) (2)
transitive relation, and there exist X,Y,Z G (A ;A

V ') and R G Q
v '

2
such XPYPZh (R)X. We distinguish among the following three cases.

Case 1 . XPY because of unanimity ((x^x^r^y^yp, (x
Q
;x

2
)r

2
(y ;y

2
)).

If also YPZ because of unanimity, then (x
n
;x )r (z-;z ),

(x
n
;x_)r

7
(z

n
;z

?
) and either 1 or 2 (or both) strictly prefers X to Z.

2
By definition this implies XPZ in h (R), a contradiction. If

(y ;y
1
)p( 2 ; z

1
) and (z ;z

2
)p(y ;y

2
) in ^ and r

2
respectively, then

YPZ implies (Y,Z) G D ; (x^x^r^y^y^pCz^z^ and Zh
2
(R)X imply

(z
n
;z_)p(x„;x») in r~, and together with condition (G2a), this implies

(X,Z) e D. Then by definition XPZ in h (R), a contradiction. If

(z ;z
1
)p(y

Q
;y

1
) and (y

Q ;y2
)p(z ;z

2
) in ^ and r

2
respectively, then

2
YPZ implies both (Z,Y) 9 D and (x ;x

2
)r

2
(y ;y

2
)p(z

Q
;z

2
) . Zh (R)X im-

plies both (z
n
;z )p(x

r)
;x

1
)r

1
(y

f
.;y

7
) and (Z,X) G D, and by condition

(Gla), this implies (Z,Y) G D, a contradiction.

2
Case 2 . XPY in h (R) because of (x

Q
;x )p(yQ ;y

) in r and (X,Y) G D.

2
If YPZ because of unanimity, then Zh (R)X and (x-jx^ )p(yn ;y- )r

1
(z

f)
;z

1
)

imply (y ;y
2
)r

2
(z

Q
;z

2
)p(x ;x

2
) and (X,Z) 6" D. But (X,Y) G D and the

above r. and r„ imply, by condition (Gla), (X,Z) G D, a contradiction.

If (y ;y
1
)p(z ;z

1
) and (z

Q
;z

2
)p(y ;y

2
) in el and r

2
respectively, then

(Y,Z) G D, and by condition (Gib), (X,Z) G D. Then, by definition,

2
(* ;x.. )p(z

R
;z

1
) implies XPZ in h (R), a contradiction. Thus it must be

(z
Q
;z

1
)p(y ;y

1
) and (y ;y

2
)p(z

Q
;z

2
) in r. and r

2
respectively, in which

2
case YPZ implies (Z,Y) G D. If also (x ;x.)p(z ;z ), then Zh (R)X

implies (y ;y
2
)p(z ;z

2
)p(x

Q
;x

2
) in r

2
and (X,Z) ^ D. But then r2>

(X,Y) G d, (X,Z) G D and (Z,Y) G D together contradict condition (G2b).

So suppose (z ;z
1
)r

1
(x ;x

1
)p(y ;y

1
). If (y ;y

2
)p(z ;z

2
)r

2
(x ;x

2
) then
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by condition (G2a), (X,Y) G d implies (Z,Y) G D, a contradiction. This

leaves as the only possible case, (y_;y„)p(x_;x„)p(z
n
;z ) in r„. Then

2
Zh (R)X implies both (z ;z.. )p(x ;x- ) and (Z,X) e D. Then, by condition

(Gib), it is (Z,Y) ^ D, again a contradiction.

Case 3 . XPY because of (y
Q
;y )p(x ;x ), (x

Q
;x

2
)p(y ;y

2
) in r and r^

2
respectively and (Y,X) 9 D. If Zh (R)X because of unanimity then

(z
Q
;z

2
)r

2
(x ;x

2
)p(y ;y

2
) implies both (y^y^pU^z^r^Xg^) and

(Y,Z) D, and by condition (Gla), together they imply (Y,X) D, a con-

2
tradiction. If Zh"(R)X because of (x-jx. )p(z ;z.. ) in r,, (z ;z

2
)p(x ;x

2 )

in r9 and (X,Z) ^ D, then YPZ implies (Y,Z) ^ d, and together with r-,

(X,Z) 9 D, and condition (G2b) imply (Y,X) e D, a contradiction.

2
This leaves Zh (R)X because of (z_;z.. )p(x

Q
;x- ) in r-, (x

Q
;x

2
)p(z ;z

2 )

in r_ and (Z,X) e D. Then, either YPZ because of unanimity which to-

gether with condition (G2a) implies, (Y,X) <= D, YPZ because of

(y ;y
1
)p(z ;z

1
) in r^, (z ;z

2
)p(y ;y

2
) in r

2
and (Y,Z) e d which together

with condition (Gib), again implies (Y,X) e D, or YPZ because of

(z ;z
1
)p(y ;y

1
), (y ;y

2
)p(z ;z

2
) and (Z,Y) ? D, and again (Y,X) € D (by

condition (G2b)). In all these three cases we reach a contradiction.

2
Hence h is transitive and therefore a social welfare function. To

2 (2)
complete the proof that h is an Arrow SWF, notice that since ft has a

(2)
nontrivial decomposition, there exist X',Y' E (A

Q
;A ) such that

(X\Y') S c and (X',Y') ? D and X",Y" ^ (A
Q
;A

(2)
) such that

2
(X",Y") e C n D. These two cases imply that h is a ND social welfare

2
function, h is not a Pareto CCR because of parts (b.ii) and (b.iii)

(2)
of the definition and the fact that ft has a nontrivial decomposition.
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Part b.

Suppose 9. admits a two-person Arrow SWF which is not a Pareto CCR.

(2)
W.l.o.g. assume 9. = 9.. x H_ admits that 2-person ASWF. Define

netD - {(X,Y) e F|(x ;x
1
)p(y ;y1

) in r
±

implies XPY in h (R)}. Since h is

not a Pareto CCR (and by lemma 2), then there exist X',Y* € (A
Q
;A V ')

and R' G JT ' such that w.l.o.g. (x^;xpp(y^;yp in rj, (y^;ypp(x^;xp

in r'
2

and X'PY' in h
2
(R'). Then either by IIA or by U (x^xppCy^yp

in r will always imply X'PY' in h
2
(R), thus (X',Y') G D and (F-C) £ D.

h
2

is also ND, then there exist R" G oS
2

^ and X",Y" G (A
()

;A
<" 2)

) such that

(y'^yppW^p in r^, (x^xppCy^yp in r^, and X"h
2
(R")Y".

Hence (Y",X") G C and (Y",X") G D, therefore (F-C) C D C F. To complete

(2)
the proof that 9. has a nontrivial decomposition, we show that D is

closed under decisive implications. Suppose there exist r' G 9. ,

(2)
r'
2
G 9.

2
and X,Y,Z G (A

Q
;A V ') such that (x ;x

1
)p(y ;y

1
)r^(z

()

;z
1
),

(y ;y
2

) r2( z
o
;z

2
)p(x

o
;x

2
) and (X,Y) 6 D

*
This imPlles both XPY in h2 (R, >

2 2
and Yh (R')Z. Then by transitivity XPZ in h (R* ) and by either IIA or U,

2
XPZ in h (R) for any R such that (x ;x

1
)p(z

Q
;z

1
) in r., hence (X,Z) G D

which proves that D obeys condition (Gla). By using similar arguments

it is straightforward to show that D also obeys (Gib) and (G2a), thus

to complete the proof we show that D also obeys (G2b). Suppose there

( 2)
exist X,Y,Z G(A

Q
;A V ') and r£ G fl

2
such that (x ;x

2 )p(y ;y
2
)p(z ;z

2
)

in r£, (Z,X) G D and (Y,X) G D. (Y,X) G D implies XPY in h
2
(R) for

every R G a
(2)

such that (x ;x
2
)p(y

Q
;y

2
) in r2> (Z,X) G D implies ZPX

2 (2)
in h (R) for every R G n such that (z.;z. )p(x ;x. ) in r- (and since

(Z,X) G D £ f, there exists such r ). Choose R G 9. such that r
2

2
is r' and (z

Q
;z )p(x

Q
;x ) in r and then ZPXPY in h (R). By transitivity
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2
ZPY in h (R), and since (y ;y_)p(z

n
;z_) in r„, then it must be

(Z,Y) G D.

Part c .

Suppose the only ASWFs ft admits, are Pareto CCRs, then there are

no j,k G N, such that 2. x JL has a nontrivial decomposition, since

otherwise it is possible, as was done in part (a) to define a two-person

ASWF which is not a Pareto CCR. Q.E.D.

Corollary 1

ft admits a two-person noncorruptible Gibbard-Satterthwaite type

SCC iff it is has a nontrivial decomposition.

Proof

Since any two-person Arrow SWF also obeys the PA condition, then by

theorem 1 and theorem 2 together, the proof is immediate. Q.E.D.

The following corollary demonstrates that some of the previous char-

acterizations of domains admitting 2-person ASWFs, are special cases of

the characterization introduced in this paper.

Corollary 2

(i) If |A
n |

=1, then conditions (Gla) to (G2b) are reduced to con-

ditions (Dla) to (D2c) of Ritz [17];

(ii) if |An | 1, A. A, ft = ft for every j £ N and no indifferences

among alternatives are allowed, then conditions (Gla) to (G2b)

are reduced to conditions (DI1) and (DI2) of Kalai-Ritz [9];



-27-

(iii) if for every j€ N and every a G A , A. (a) = A, o,
. = n,

|
a| =1

and no indifferences among alternatives are allowed, then con-

ditions (Gla) to (G2b) are reduced to conditions (Dlla) to

(DI2b) of Kalai-Muller [8].

Proof

(i) Since |
aJ = 1 (say A

n
= {a}), then instead of (ajx..) we use

x, and instead of X = (a;x,,...,x ) we use X = (x1( ...,x ).
1 in in

Conditions (Dla) to (D2c) are as follows.

Dla. If for some r G ft., x
1
py.rz

1
and (X,Y) £ D then (X,(z.,,y

2
)) e D.

Dlb. If for some rG Q. t x ry pz and (Y,Z) G d then ((x ,y
2
),Z) G d.

Die. If for some rG o x py pz and (X,Y),(Y,Z) G D, then (X,Z)G D.

D2a. If for some r G Q. , x-py.rz. and (Z,X) G D then ((z ,y
2
),X) G D.

D2b. If for some r G «
2>

x.ry pz. and (Z,X) G d then (Z.Cx^y^) € D.

D2c. If for some r G Q x
2
py

2
pz and (Z,X) G d then either (Z,Y) ^ d

or (Y,X) G D (or both).

If (X,Y) G D and (X,Y) £ C then x py rz implies (X.U^y^) G D;

if (X,Y) G C then condition (Gla) implies (X,(z ,y
2
)) G D. In both

cases condition (Dla) is derived. Similarly (G2a) implies (Dlb), con-

dition (Gib) implies (Die), condition (G2a) implies (D2a), condition

(Gla) Implies (D2b) and condition (G2b) implies condition (D2c).

(ii) Conditions (DI1) and (DI2) are as follows.

DI1. If for some p 6 Q, x
1py ;

,pz , (X,Y) G D and (Y,Z) G D, then

(X,Z) G D.

DI2. If for some p G ft, x-py.pz and (Z,X) G D, then (Z,Y)G D or

(Y,X) G D.
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Condition (Gib) implies condition (DI1) while condition (G2b) implies

(DI2).

(iii) Since for every j e N and every a e A_, A (a) A and |A| =1

say A = {x}, then (A-.;A ) = (A_;x) for every j e N. Thus

instead of X = (x
n
;x,...,x) we just use x.. etc.

Conditions (Dlla) to (DI2b).

DI1. If there are p ,p£ P. such that xpypz and ypzpx then

Dlla. (x,y) £D implies that (x,z) G D, and

Dllb. (z,x) £ D implies that (y,x) 6 D.

DI2. If there is a pS S such that xpypz then

DI2a. (x,y) G D and (y,z) G d imply (x,z) £ D, and

DI2b. (z,x) e D implies that either (y,x) 6 D or (z,y) 6 r

(or both).

Condition (Gla) implies (Dlla), condition (G2a) implies condition (Dllb)

(when X - y, Y = z and Z = x). Condition (Gib) implies condition (DI2a)

and (G2b) implies (DI2b). Q.E.D.

To show the usefulness of theorem 2, we discuss two examples.

Example 1 . Restricted domains containing inseparable
pairs of alternatives

For j G N, (x
n
;x), (y_;y) G (A-;A.) is an inseparable pair of alter-

natives in P. . (denoted by ((x ;x),(y ;y)) if there exists r e ft . such

that (x
Q
;x)p(y

Q ;y)
in r, and for no (z~;z) e (A

Q
;A.) and no r' G

fi ,

it is (x
Q
;x)p(z ;z)p(y ;y) in r'. (See Kalai-Ritz [9] and Ritz [17]

for discussion of inseparable pairs of private alternatives and Kalai-Ritz
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[10] for the case of inseparable pairs of public alternatives. Kim-

Roush [11] proved for the case of public alternatives, no indifferences

allowed and all individuals have the same restricted domain of prefer-

ences that the domains containing exactly one inseparable pair are the

largest restricted domains that still admit Arrow SWFs).

Assume that for every j £ N (n = 2) and every a £ A-., A (a) A^ ,

P. . = P. and fi contains only antisymmetric, complete and transitive binary

relations. Suppose ((x„;x), (y„;y)) is an inseparable pair in Q.

Claim 1

If JAqXAJ > 2 or if IA-xaJ = 2 and \p.\ =2, then P.xfl has a non-

trivial decomposition.

Proof

Define D {(X,Y) G F such that either (yQ ;y2
) ^ (x

Q
;x) or

(x
Q
;x

2
) t (y

Q
;y)}.

Obviously D C F. If |a
q
xA.| = 2 and |q| - 2 then actually

{A XM = ^o'^'^O'^' ° = fp
i'

p
2
} s,t

* (*o'* )p1^0 ;^ and

(y ;y)P 2
(^ 5x). Hence (Y,X) S D and (X,Y) € D where X = (x ;x,x) and

Y - (7Q ;y,7)»
thus F-C S D S F « If

I
a
o
xA

tI > 2 then tnere exists

(z
Q
;z) e A xA

i
such that (x »x ) I* ( z q5 z ) t ^o ,y ^ and aSain it: is easy

to demonstrate that D ^ 0, DC F and F-C 5 D « T<> prove that D is closed

under decisive implications is straightforward and the proof is omitted.

Q.E.D.
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Example 2 . Decentralization .

Let |a
q |

^2. Assume that for every j€H (n = 2), the only re-

strictions on !1 are that for every a,b e A- and every r68 , if

(a;x)p(b;y) in r for some x e A (a) and y* e A.(b), then (a;x)p(b;y) in

r for every x G A (a) and y £ A.(b). We titled this example "decen-

tralization" since such restrictions allow separation of issues where

different individuals are endowed with the responsibility for different

areas and a coordunator is responsible for decisions pertaining to matters

involving more than one area.

Claim 2

The above Q^xfi has a nontrivial decomposition.

Proof

Define D = {(X,Y) € f|x
q

^ yQ
} . The proof that F-C £ D £ F and

that D is closed under decisive implications is straightforward and

is omitted. Q.E.D.

4. The Group's Size and the Existence of Arrow
Social Welfare Functions

Kalai-Muller [8], Maskin [13], [14], Kalai-Ritz [9] and Ritz [17]

all proved for their respective cases the independence of the existence

of an Arrow SWF from the group's size. That is to say that if a set of

restricted domain of preferences admits a k-person Arrow SWF for a

finite k greater than one, then it admits an n-person Arrow SWF for any

given finite n greater than one (though these ASWFs need not be the same).

These results enabled the characterization of the domains admitting

Arrow SWFs in general, rather than characterizing only the domains
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adraitting two-person Arrow SWF. Unfortunately, we did not manage to

prove a parallel result for the general case analyzed here and the issue

of complete independence is still an open question, nevertheless the

following two theorems do contain some interesting results about the

relationship between the group's size and the possible existence of

Arrow SWFs. Theorem 4 also displays some of the difficulties which

arise when dealing with a mix of private and public alternatives.

Theorem 3

For n > 2, if Q admits a k-person Arrow SWF then it admits an

m-person Arrow SWF for any 2 _< k <^ m _< n.

Proof

Suppose 8 admits h (k _> 2), a k-person Arrow SWF. W.l.o.g. let

K = {l,2,...,k} C N be such that ft
v ' admits h . Define h on

Q,x...xn xft as follows.
1 k k+1

For any X,Y€ (A ;A
(k+1)

) and R€ n
(k+1)

k+1
(i) XIY in h (R) iff (x

Q
;x .)i(y

Q
;y .) in r for every

j = l,...,k+l,

k+1
(ii) XPY in h (R) if

(1) X
-(k+l)

PY
-(k+l) ^^-(k+l))' °r

(2) x
-(k+i)

IY
-(k+i)

in hk(R
-(k+i) ) and Cx JX

fc+l
)pCy Jyk+l )

in r, .
k

k+1
The proof that h " is an Arrow SWF is straightforward and is omitted.

By repeating the above step as many times as needed we can prove that

il admits an m-person Arrow SWF for any m such that k _< m _< n.

Q.E.D.
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We now consider a special case of the general mixed alternatives

case, where the public and private alternatives are independent of each

other, every individual in the group has access to the same set of

private alternatives, indifferences among alternatives are not allowed

and all individuals have the same restricted domain of preferences.

Assume that for every j e N and every a G A , A. (a) = A^, ft . ft',

and ft' contains only antisymmetric, transitive and complete binary

relations. We say that ft' admits an n-person ASWF, if ft' admits an

n-person ASWF. Also assume that no group indifferences are allowed.

Theorem 4

For n > 3, ft' admits an n-person ASWF iff it admits a 3-person ASWF.

Proof

Part a .

Assume that ft' admits a 3-person ASWF, then by theorem 3, ft' also

admits an n-person ASWF.

Part b .

Assume that ft' admits h an n-person ASWF, for n > 3. If ft' con-

tains an inseparable pair of alternatives and [A-xA-l > 2 or |ft'| _> 2,

2
then by claim 1 of example 1, ft' admits h a 2-person ASWF, and then by

3
theorem 3 it also admits h a 3-person ASWF, so let's assume that ft'

doesn't contain any ISP (notice that if |a
q
xAJ - 2 and |ft'| - 1 then it

is either the case of |A
|
- 2, |A

|

= 1 and then for no n > 2 is there
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h
n

an n-person ASWF, or it is the case of |A
n |

=1, |A
|
=2 and then

3
ft

1 admits h a 3-person ASWF as was proved in Kalai-Ritz ([10], theorem 3,

(ii))).

Individuals i,j ^ N are identical over X,Y € A xA? (notice that

now (A
Q
;A

(nO - (A
Q
xA^), denoted by (i,j), if r

±
- r , (x^Xj) - (x

Q
;x )

and (yn ;y.)
= (yn >y.)-

Individual k is dictator by (i,j) , denoted

k = d(i,j), if whenever (i,j) are identical, k is a dictator, i.e., for

every X,Y e A
n
x
^S

and every R € &' such that r. = r,, x, = x. and

y - y , then (x
n
;x, )r. (y_;y, ) implies Xh (R)Y (notice that both f. and

h are strict orders).

Lemma 5

For n > 4, if h a SWF is such that whenever two individuals are

identical there exists a dictator by them, then this dictator is unique.

Proof

Suppose the claim is false. Case 1 . For every (i,j), d(i,j) G {i,j}.

Since | A_
|
^2, let (x

Q
;x), (x

Q ;y)
e AnxAi

and r € n ' be such tnat

(x ;x)r(x
Q
;y). Let X = (x ;x,x,y,y,... ,y), Y - (x ;y,y,x,x,y, .. . ,y) and

R = (r,...,r), then Xh
n
(R)Y because d(l,2) e {1,2} and also Yh

n
(R)X be-

cause d(3,4) G {3,4}, a contradiction.

Case 2 . There exists at least one identical pair (i,j) s.t. d(i,j) £ (i,j}.

W.l.o.g. assume that 1 = d(2,3). Suppose there exists (i,j) s.t. d(i,j) f 1.

Subcase 1 . 1 £ U,j}. Then if k = d(i,j), let X = (x
Q
;x,y, . . . ,y),

Y = (x ;y,x,...,x) and R = (r,...,r). Then Xh (R)Y because of 1 = d(2,3)

and Yh (R)X because d(i,j) - k ^ 1, a contradiction.
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Subcase 2 . 1€ {i,j}. Since d(l,j) t 1, then also d(l,j) 5
s j or

d(l,j) ^ ^l»j}> and a contradiction can be easily constracted.

Q.E.D.

The following lemmas are proved for n = 4. This is done only in

order to simplify the notations, the proofs for the cases of n > 4 are

identical.

Individual i is b-dictator if for every R € tt'
n

and X,Y £ A xA
x

s.t. x_ = yn = b, (b;x,)r.(b;y.) implies Xh (R)Y.

Lemma 6

4
Let h be a SWF. If for every two identical Individuals there

exists a dictator, and if for some b^A. there is a b-dictator then

these dictators are the same.

Proof

W.l.o.g. assume 1 = d(i,j) for every I,j <= {1,2,3,4} (i j* j). Sup-

pose for some b £ A.., I fi 1 is the b-dictator. Then let

(b;x),(b;y) £ Aq*\ and r € n ' s,t * (b;x)r(b;y) and let X - (b;x,y,y,y),

Y (b;y,x,x,x) and R = (r,r,r,r). Then by the above assumptions it is

Xh
4
(R)Yh (R)X, a contradiction. Q.E.D.

j is a public-dictator if for every R G
ft
,n

and X,Y 6 A xA^ such

that x- - X- « ... = x and y = y_ = ... = y , then (x ;x)r
i
(y

Q
;y)

implies Xh
n
(R)Y.

Lemma 7

Let h be a SWF. If for every two identical individuals there

exists a dictator k, and there is also j a public-dictator then k = j.
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Proof

Suppose k ^ j. W.l.o.g. assume k = 1 and j = 2. Let

(a;x),(b;y) e Aq*^ and r >
rf G a ' be sucn tnat (a;x)r(b;y) and

(b;y)r'(a;x) (if there are no such r and r' , then |ft*| = 1 and h a

2-person ASWF can be defined directly). Let X = (a;x,x,x,x),

4
Y " (b;y,y,y,y) and R = (r,r ,

t r
, ,r') then Xh (R)Y because of 1 = k(2,3)

4
and Yh (R)X because of j = 2, a contradiction.

Q.E.D.

k is an induced dictator if he is the dictator of lemmas 6 and 7

combined.

2
Preferences (r,r') G fl' are ((a;x.. ,Xg), (b;y .. ,y ,, )) connected if

there exists r" 6 ft' which agrees with r over (a;x. ), (b;y. ) and with

r' over (a;x
2
), (b;y

2
>.

Lemma 8

4
Let h be an ASWF for which there exists k, an induced dictator.

4 4
If there exist X,Y £ a

q
xA

i
and R G n ' such that ^o ;yk^

r
k^

x
O
;x
k^

and

4
Xh (R)Y then there are no i,j S N (i t j) such that (r ,r ) are

((XqJx^x .),(y ;y
1
,y .)) connected.

Proof

W.l.o.g. assume that k - 1, (r
2
,r

3
) are ((x ;x

2
,x

3
),(y ;y2> y3 ))

connected, (y.;y )r (x.jx.) and Xh (R)Y. Since (r_,r-) are connected

there exists r' £ ft' which agrees with r» over (x
n
;x

1
) , (yn ;y, ) , and

with r
2
over (x

Q
;x

2
) , (y_;y

2
) w.l.o.g. assume (x

Q
;x

2
)r' (x_;x,) and

(7 ;y~
3
)r'(y" ;y"

2
). Let R' = (r^r'.r 1 ,^). By IIA it is Xh

4
(R')Y.
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_____ _____ _4
Let Y - (y ;y

1
,y

2
,y

2
,74

) and X - (x ;x
1
,x

2
,x

2
,x

4
). Then it Is Yh (R')Y

4 4 s—
by unanimity, Yh (R')X since 1' is an induced dictator, and Xh (R' )X

— 4 —
by unanimity which leads to Yh (R')X, a contradiction. Q.E.D.

Individual k is x-essential if there are X,Y € A
Q
xA and R6 fl*

such that x
Q

t yQ , \ = Yk
== *> (x ;x)r

k(yQ
;x), (yQ ;y

)r,(Xg;x ) for

every j^N, j £ k and Xh
n
(R)Y.

Lemma 9

4
If h is an ASWF for which there exists k an induced dictator, then

for no x e A is there an individual j ^ k who is x-essential.

Proof

Suppose the claim is false. W.l.o.g. assume k = 1 and j = 2 is

4 4
x-essential, i.e., there exist X,Y e An xAi and R G n ' such tnat

X = (x ;x
1
,x,x

3
,x

4
), Y = (y

()
;y

1
,x,x

3
,x

4 ), (x
Q
;x)r

2
(y ;x), (y

Q
;y )r (x

Q
;x..)

4
for j = 1,3,4 and Xh (R)Y. Since 1 is an induced dictator, then by

lemma 8, no two preferences of r
2 , r~ and r

4
can be connected. There-

fore (x ;x)r
2
(y

Q
;x) implies (y ;x)r

3
(x

Q
;x) and (y ;x)r

4
(x

Q
;x),

(y
Q ;y3

)r
3
(x ;x

3
) implies (x ;x

3
)r

2
(y ;y

3
) and (x

Q
;x

3
)r

4 (y ;y3
) and

(y ;y4
)r

4
(x

Q
;x

4
) implies (x ;x

4
)r

2
(yQ ;y4

) and (x
Q
;x

4
)r

3
(y ;y4

).

Case 1 . Suppose (y
Q
;y4

)r
3
(y ;y

3
). If also (y ;y

3
)r

4
(y

Q ;y4
), then it

implies (x
Q
;x

4
)r

3
(y ;y

3
) , (x ;x

3
)r

4
(y ;y4

), and therefore

4 4
(x

Q
;x

1
,x,x

3
,x

3
)h (R)(x

Q
;x

1
,x,x

3
,x

4
)h (R)(y

()
;y

1
,x,y

3
,y4

) and

(x ;x
1
,x,x

4
,x

4
)h (R)(y ;y

1
,x,y

3
,y4

). If (x
Q
;x

3
)r

2
(y ;y4

) then r
2

and r. are connected over ((x
Q
;x,x.,), (y ;x,y

4
), a contradiction, and

if (y
Q
;y4

)r
2
(x ;x

3
) then (x

Q
;x

4
)r

2
(y ;y

3
) and r2> r3

are
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((x
n
;x,x, ), (y_;x,y_))-connected, again a contradiction. If

4
(y ;y

4
)r

4
(y ;y

3
), then by unanimity (x^x^x.x^x^h (R)(y ;y

1
,y,y

3
,y

3
),

but then either r2' r3 or r2' r4 are ((xo» x > x4)> (yQ>x,y~))-connected,

a contradiction.

Case 2 . Suppose (y
Q
;y

3
)r

3
(y ;y

4
). If also (x ;x

4
)r

3
(x

Q
;x

3
) then by

4
unanimity (x^XpX.x^.x^h (R)(y ;y1 ,y,y4 ,y4

) and r
2

is connected

either with r_ or with r. , a contradiction. If (x-.:x_)r_(x_:x, ) then
3 4 3 3 4

4
(x ;x

3
)r

3
(y

Q
;y

4
) and (x^x^x.x-^x^h (R)(y ;y

1
,x,y

4 ,y4
); if also

(y ;y
3
)r

4
(y ;y4

) then it must be (x ;x
3
)r

4 (y ;y4
)r

4
(x

Q
;x

4
),

4
(x

n
;x.. ,x,x,,x-)h (R)(y_;y_ »x,y, ;y, ) and r»,r, are connected, a contra-

diction; but if (y ;y4) r4(y 5y
3 ) then lc must be ^x

o
;x4^ r4^ yo ;y4^

and

r_ is connected either with r, or with r, respectively, a contradiction.

Q.E.D.

We say that k is (x,r)-dictatorial by j, denoted k = d.(x,r), if

4 4
for every X,Y £ An*^ and every R G ft

1 s.t. x. = y = x and r = r,

4
then (x ;x

k^
r
k^ y ;yk^

imPlies a (R )Y *

Lemma 10

4
Let h be an ASWF for which there is k, an induced dictator. If

there are x 6 A.. , j 6 N and r G ft' such that d.(x,r) exists then

k = d.(x,r).

Proof

W.l.o.g. assume k = 1, j € N, x' ^ a , and r' € Q« s .t. d.Cx'.r') =

2^1. Also assume (x
n
;x)r' (yn ;x).

Let r G ft' be such that (yn
;y)r(x_;z)

for some y,z e A. (notice that there must be such r). Suppose j j* 1.
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_ 4
Then since 2 d.(x,p) it must be (x

Q
;z,x,x,x)h ((r,r' ,r' ,r* ))(y„;y,x,x,x),

which contradicts the assumption that 1 is an induced dictator. If

4
j = 1, then since 2 = d^x.p) it is (y

Q
;x,y,y,y)h ((r' ,r,r,r))(x ;x,z,z,z)

which again contradicts the assumption that 1 is an induced dictator.

Q.E.D.

Lemma 11

4
If h is an ASWF and there exists k an induced dictator, then there

exist at least one individual j e N, alternative x G A and r e Q' for

which d.(x,r) does not exist.
J

Proof

Suppose this is not the case. Assume w.l.o.g. that k = 1. Then by

4
lemma 10, 1 d.(x,r) for every j £ N, x €E A- and r G Q'. Since h is

4 4
an ASWF, there exist X,Y € A xA

-,
and R e n ' s.t. (y ;y-)r., (x ;x-) and

4
Xh (R)Y. This implies that there exists j £ N, say j » 2, s.t.

(x ;x
2
)r

2 (y ;y
2
). Since ((y ;y1

),(x ;x
1
)) is not an ISP, then there

exist (z
Q
;z ) e A xA

x
and r e n ' such that Cy ;y

;L

)r(z ;z
1
)r(x ;x

;L

).

4
Let R' = (r,r ,r,,r.) then by IIA also Xh (R' )Y. Since 1 = d.(y

2
,r

2
)

4
then (y ;y

1 ,y2 ,y3 ,y4
)h (R' )(z ; Z;L ,y2

,x
3
,x

4 ), and since also

4
1 = d

3
(x

3
,r

3
) then (z^z^y^x^x^h (R f Xx^x-pX^x^x^, a contra-

diction. Q.E.D.

Let us now complete the proof of the theorem. If h (n >^ 4) is such

that there exists an Induced dictator for it, then by lemma 11 there

exist x eA , j 6 N and r G &» for which there is no d.(x,r). W.l.o.g.

assume j = n and define h ' (n >^ 4) as follows. For every X,Y & A
q
xA

i
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andRE'Q 1
""1

, Xh
n-1

(R)Y iff (xn ;x_,...,x . ,x)h
n
((r. , .. . ,r ,,r))

u l n—i i n—

1

(yn »y-i » •• • »y _-i> x )« It I s straightforward to show that h is an ASWF.

If there is no induced dictator for h , then: Case 1 . There exist

i,j GN such that there is no k € N which is dictator by (i,j). W.l.o.g.

assume (i,j) to be (n-l,n). Define h as follows. For every

X,Y e AqXA^"
1

and R£ fl'
11
"1

, Xh
n_1

(R)Y iff

(x ;x
1
,...,x

n_1
,x

n_1
)h

n
((r

1
,...,r

n_ 1
,r

n_1
))(y ;v

i5
...

}
v
n_1 ,yri

_1
). The

proof that h is an ASWF is straightforward. Case 2 . For every (i,j)

there exists k a dictator by (i,j). Since there is no induced dictator,

there must exist b A
n

such that there is no b-dictator for h , i.e.,

there exist r G fl» R» € a* . X - (b:x.,...,x , ,x ) and
1 n-1 n

Y = (b;y, ,...,y i»y ) such that (b;y. )r, (b;x, ), Xh (R')Y when r = r.
1 n—l n i J. x n

Define g: A-.XA. + A^ as:

g(X) - yn if X - (b;? ,...,?)
n in

= x otherwise,
n

Define h
n_1

as follows: For every X,Y € A xa""
1

and RG a 1
""1

,

Xh
n_1

(R)Y iff (X,g(X))h
n
((r

1
,...,r

n_1
,r))(Y,g(Y)). Again, the proof

that h is an ASWF is straightforward. This completes the proof of

theorem 4. Q.E.D.
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